I, Object

I might have mentioned this before, but I started programming with the more loosely typed languages.  Think PHP, Python, or the loosest of the loose, Javascript.

With PHP, you don’t really need to declare what type a variable will be- you can just declare:
$fortyTwo = “42”;

Python is similar, even simpler to declare:
fortyTwo = “42”

Now, if you need to change the type of a declared variable, you might have to re-cast it, but you still don’t have to provide a type annotation beforehand:
PHP: intval($fortyTwo); // $fortyTwo is now 42 – integer type
Python: int(fortyTwo) // fortyTwo is now 42 – integer type

Javascript muddies the waters a bit, as you can add a string directly to a number, but you’re probably not going to like the results:
const fortyTwo = “42”;
fortyTwo + 42; // returns “4242”

It’s safer to explicitly coerce the “type” yourself:
42 + Number(fortyTwo); // returns 84
or
42 + parseInt(fortyTwo); // also returns 84
or
42 + +fortyTwo; // a bit more confusing to read, but also returns 84

All basic stuff- but the point is that until I started working with C# earlier this year, I didn’t realize how complicated the very basic task of declaring a variable can be, and how deep into your program those complications can extend.

In a current project, we have a bit of code we use to send out an email notification.  A user submits a form on the frontend to an api endpoint, where a method on that endpoint processes the info and sends the email.  .NET has a base class for this: IEmailSender- you can extend it as needed (and the process of extending classes is a good topic for another time).

The email processing can be used to send a few different kinds of messages (password reset, sales contact form, support request form, etc).  We have different templates for each, with different variables you can replace with custom info (the user’s name, their support ticket id, a password reset token, etc).  So that template info is just passed into our SendEmailAsync function as an object.  First, we initialize the object:

support_email customer_vars = new support_email {
    first_name = loggedInUser.first_name,
    support_id = objModel.support_id,
    request_type_id = objModel.request_type_id,
    screen_id = objModel.screen_id,
    request_subject = objModel.request_subject,
    request_notes = objModel.request_notes
};

The loggedInUser object is the current user (retrieved via the Json Web Token provided on each request) and the objModel object is the info from the form they submitted.  Now we can pass the customer_vars object into our SendEmailAsync function so they can be used in the template.

But making SendEmailAsync reusable was tricky.  If a variable is going to be passed into a function in C#, you have to give it a type.  Giving it a generic ‘Object’ type won’t work- so usually you just create a simple class or interface, name your fields, and use that as the type.  You can also do useful tasks at this point, like declare required fields or even restrict what can be entered for a field:

public class support_email
{
    public string first_name { get; set; }
    public string support_id { get; set; }

    [Required]
    public string request_type_id { get; set; }

    [Required]
    public string screen_id { get; set; }

    [Required]
    public string request_subject { get; set; }

    [Required]
    public string request_notes { get; set; }
    
}

This works great, until you want to pass a different type of object to the SendEmailAsync method. For example, we want to use the SendEmailAsync method to also send mail regarding a password reset. That’s not going to have a “screen_id” field, but you can’t just pass the wrong object type- C# won’t allow it.

This was an eye opener after a few years in Javascript-land.  There I can just pass anything as an argument and be off and running.  Our current answer is to create a super basic base class:

public class general_email_template {}

Then, each subset of email template simply inherits from that class:

public class reset_email : general_email_template
{
    //properties specific to reset email here
}

public class support_email : general_email_template
{
    //properties specific to support email here
}

And so on. In the SendEmailAsync method, we use the type “general_email_template” for our template variables object argument type and it works great. Any type that extends the type the method takes is acceptable.

Another possible option that we might explore is having multiple methods with the same name (SendEmailAsync) but different parameters. That way, we could just declare the specific type on each different SendEmailAsync version and let the language decide which one to use based on what it was passed (see previous post about how C# handles methods with the same name but different argument parameters). One approach might be better than the other, but this one works for now!

As an aside, another major difference between a statically typed language like C# and Javascript when performing a basic task is looping over an object. Coming from Javascript, it seems much more complicated in C#:

foreach(var v in variables.GetType().GetProperties())
{
    string prop_name = v.Name.ToString();
    string prop_value = v.GetValue(variables, null).ToString();
}

Than in JS:

for(let i in variables) {
    let propName = i;
    let propValue = variables[i];
}

The type system means you can be much more confident about what you’re getting as each variable, but it can definitely be an adjustment coming from a more relaxed language!

Advertisements

2 thoughts on “I, Object

  1. outsourcedguru May 26, 2017 / 7:10 pm

    Having coded to C/C++/C# for three decades, I honestly find that JavaScript and some of these less-typed languages are easier to get along with. Do I miss the rigor of creating base classes, of overloaded/overridden functions, of public/private keywords within .h/.hpp files? No. Frankly, it was a pain.

    Having written a C compiler myself I understand the need for all that. Simply put, it makes the c compiler software programmer’s life a lot easier. :laugh:

    If you google “most popular coding languages 2017” and look at some of the images in the result you might be surprised. According to some, Python is leading the list with C++/C# and C in third/fourth/fifth places well behind Java (2nd).

    TypeScript is a Microsoft-developed attempt to type JavaScript. Perhaps in the future people who are fond of this strictness will eventually be programming in some derivative of TypeScript but who knows?

    Like

  2. joedriscoll79 May 27, 2017 / 1:02 pm

    Thanks for the comment! I definitely also find JS easier to follow, but that’s probably because that’s where I started. It’s nice to hear the perspective from someone with a lot more experience in the C/C++/C# domain.

    Also, I’m currently using Typescript on an Angular project and it’s really cool. It’s largely opt-in, so you can have areas that are type-checked, while leaving others as normal JS. This has allowed us to type check areas of our code base that would benefit from a bit more stability than JS traditionally provides, without having to do any class/interface inheritance dance just to pass an object as an argument!

    Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s